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A number of techniques have been described recently for 
determining the positions rj of a known group of atoms in 
a molecular crystal with respect to an arbitrarily chosen 
origin. Once the positions r~ are known, it remains to 
determine the position r0 of their arbitrary origin with 
respect to the origin of the chosen unit cell. Methods for 
determining r0 have been described by Nordmann & 
Nakatsu (1963), Vand & Pepinsky (1952), and Tollin & 
Cochran (1964) (the last will be called TC hereafter). All 
of these methods require the computation of a three- 
dimensional function of the three coordinates of r0. 

The slightly modified derivation of the function Q(r0) 
(TC) given here shows that a separate function Q(r0) is not 
required for each space group. It is now apparent that 
separate one- and two-dimensional functions can be ob- 
tained which determine the position of the arbitrary origin 
relative to individual symmetry elements. These simpler 
Q-functions are fewer in number, faster to compute and 
easier to interpret than the three-dimensional Q(r0) of TC. 
A similar separation into one- and two-dimensional func- 
tions has been observed by Hoppe in the application of the 
convolution molecule method (Hoppe, 1957). 

The new Q-functions are obtained by considering each 
symmetry element of the space group separately. 

If there are n atoms in the known group the sum function 
(Buerger, 1959) obtained by setting down the origin of the 
Patterson function at the ends of the n vectors r~ is 

n 

S.(r) = z  IF(h)l z Z cos 2~h. ( r j - r ) .  (1) 
h j---1 

Concentrating on one particular symmetry operation, 
T, in the space group and defining R0 as the position of the 
arbitrary origin with respect to the symmetry operation 
under consideration, the sum function should have peaks 
at the positions r =  T(rj + R0)-R0. Substituting for r in (1) 
and summing over all the sites gives a new Q-function, 

n 

Q(R0)=E IF(h)] 2 Z" cos 2rch. [ r j + R 0 -  T(rf+R0)] . (2) 
h j , j ' = l  

The explicit forms of the Q-functions required for twofold 
axes and planes of symmetry are given as an example. 

If T represents a twofold axis parallel to b, 

T(xyz )  = - x,  y + fly, - z 

where fly = 0 if the axis is a rotation axis and fly = ½ if it is 
a screw axis. This can be substituted in (2). If we define 

n 

C = Z cos 2rc(hx~ + kyj  + lzj) 
j = l  

n 

C' = ~r cos 2~z(hxj - kyj  + lzj) 
j = l  

and S and S' the corresponding sine functions, then 
equation (2) can be rearranged in the most convenient form 
for computation as 

Q(XoZo) = E U(hl) cos 4rc(hX0 + IZo) 
ht - V(hl) sin 4rc(hX0 + lZo) 

where 

and 

where 

U(hl) = Z,  ( - 1 )q ]F(hkl) lz(CC" - s s ' )  
k 

V(h l )=  Z ( -  1)q[F(hkl)lz(CS" + s c ' )  
k 

q = 2kf ly .  

Similarly if T represents a plane of symmetry it will be 
of the form T(xyz )  = x + Jx, - y, z + Jz 

and substitution in (2) gives 

Q(Y0)=z U(k) cos 4zck Y o -  V(k)  sin 4r~k Yo 
k 

where 

and 

where 

U(k)= z ( -  1)qlF(hkl)lz(cc" + SS') 
hi 

V(k)  = ~ ( - 1)q]F(hkl)]z(SC ' -  CS')  
hl 

q = 2(hJx + 1Jz).  

Once the U's and V's have been calculated, the Q-func- 
tions can be calculated with the use of standard Fourier 
programs. 

Examination of equation (2) shows that a large peak will 
occur in the Q-function whenever there are two atoms in 
the known group having relative coordinates rl and r2 
such that the relationship 

T(rl + R0) - (r2 + R0) = 0 (3) 

holds for some value of R0. At this value of R0 the magnitude 
of Q(R0) is of the order of Z ]F(h)lZ. It can be shown that 

h 
the relationship (3) will be satisfied whenever there is a pair 
of atoms in the known group which would give rise to a 
non-Harker peak in the appropriate Harker section (Lipson 
& Cochran, 1953, p. 159). For example, in a structure 
containing a 21 axis and having two atoms with relative 
fractional coordinates (xl,yl, zl) and (x2, ½ + yl, Z2) a 'false' 
peak will occur in the Q-function at 

Xo = -- ½(Xl -[- x2)  Z o :  - ½(z1 q- z 2 ) .  

The false peaks will have the same order of magnitude as 
the peak which defined the true position of the known group. 
The false peaks can be removed from the Q-function by 
modifying the [F[2 values to remove the origin peak from 
the Patterson function (Lipson & Cochran 1953, p. 174). 
However, this is not necessary since their positions can be 
accurately predicted before the Q-function is calculated. 
Since, in the final summation, the trigonometric functions 
have arguments of the form 4rc(h. r) the peaks in the Q- 
functions are very sharp. It follows therefore that the false 
peaks cannot cause confusion by overlapping the origin- 
locating peaks. Because of the sharpness of the peaks in 
the Q-functions it is important to evaluate them over suf- 
ficiently closely spaced intervals. 
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In all the examples which follow, 'sharpened' IF[ 2 values 
were used in the calculation of the Q-functions. Q(XoZo) 
was calculated using the relative coordinates of the eleven 
atoms in the plane of the purine residue in deoxyadenosine. 
The relative coordinates were those obtained from the 
determination of the molecular orientation (Watson, Sutor 
& Tollin, 1965). The space group is P21. The map obtained 
is shown in Fig. l(a). The expected positions of peaks due 
to atoms separated by b/2 are marked in the map. The 
largest remaining peak is that which determines the position 
of the origin. The map of Q(XoZo) obtained using the 
relative coordinates for the atoms of the sugar residue in 
deoxyadenosine is shown in Fig. l(b). In this case only 
eight out of a total of twenty heavy atoms in the molecules 
were used. The coordinates used were the final coordinates 
from the refined structure with an arbitrary change of 
origin to x=0.2,  z=0"3. In this case there are no atoms 
separated by half in their fractional y coordinates. 

The function Q(Yo) was calculated from relative co- 
ordinates for pyrimidine obtained by taking the final 
published coordinates (Wheatley, 1960) and giving them 
an arbitrary shift of origin to x = - 0 . 1 5 ,  y = - 0 . 3 .  The 
space group is Pna21. Q(Yo) was used to define the position 
of the molecule relative to the a-glide plane. Only the 
fifty largest 'sharpened' IF[ 2 values were used. The re- 
sulting map is shown in Fig. 2 with the origin shifted to 
y = - ¼ to allow for the fact that the a-glide occurs at y = ¼. 
The dotted vertical line represented the correct answer of 
y =  - 0.3. The results show that even with this small amount 
of data the origin position is well defined. It can also be 
seen that the determination of the y coordinate is independ- 
ent of the fact that at this stage the x coordinate of the 
arbitrary origin is not known. In all these examples the 
error in determining the origin position was less than 0-05/~. 

These Q-functions have also been used to determine the 
structure of 4-acetyl-2'-fluorobiphenyl (Tollin, Young & 
Sutherland, 1965). 

The author wishes to thank Professor W. Cochran, F.R.S., 
Dr M.G. Rossmann and Dr P. Main for their advice and 
criticism. 
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Fig. l .  Q ( X o Z o )  for  deoxyadenosine (a) using purine relative 
coordinates (b) using sugar relative coordinates. + indi-  
cates false peaks, x indicates expected positions. 

Fig.2. Q(Yo) for pyrimidine. Dotted line indicates expected 
peak position. 
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There is considerable current interest in the crystal struc- 
tures of N-substituted salicylaldiminato complexes of transi- 
tion metals (see Table 5, Frasson, Panattoni & Sacconi, 
1964; Fox, Lingafelter, Orioli & Sacconi, 1963; Wei, Stogs- 
dill & Lingafelter, 1964; Cheeseman, Hall & Waters, 1965). 
Attention has been mainly focused on the dimensions and 
stereochemistry of the molecule, as in all but the simplest 
such molecules there appears to be little molecular inter- 
action. The substituents in compounds studied to date have 

been alkyl or phenyl groups, and it is of interest to consider 
the influence on such structures of groups with hydrogen- 
bonding potential. In this connection studies of the crystal 
structure of bis(N-2-hydroxyethylsalicylaldiminato)cop- 
per(II) were begun both at Providence and Auckland, the 
results from one of these being announced at the Rome 
Congress (Boyko, 1963). It transpired that the two investiga- 
tions were similar in scope and achievement, and a joint 
publication has been decided upon. 


